Liquid-crystal-mediated self-assembly at nanodroplet interfaces
نویسندگان
چکیده
منابع مشابه
Directed self-assembly of inorganic nanoparticles at air/liquid interfaces.
Inorganic nanoparticles (NPs) appear as the forefront functional structure in nanotechnology. The preparation of functional materials based on inorganic NPs requires their assembly onto well-defined structures. Within this context, self-assembly at air-liquid interfaces is probably the best candidate for a universal procedure for active materials composed of assembled NPs. The detailed in situ ...
متن کاملNanoparticle self-assembly at the interface of liquid crystal droplets.
Nanoparticles adsorbed at the interface of nematic liquid crystals are known to form ordered structures whose morphology depends on the orientation of the underlying nematic field. The origin of such structures is believed to result from an interplay between the liquid crystal orientation at the particles' surface, the orientation at the liquid crystal's air interface, and the bulk elasticity o...
متن کاملSelf-assembly and cross-linking of FePt nanoparticles at planar and colloidal liquid-liquid interfaces.
Terpyridine thiol functionalized FePt and Au NPs were self-assembled and cross-linked at the liquid-liquid interfaces using Fe(II) metal ion. Complexation of terpyridine with Fe(II) metal ion leads to NP network and affords stable membranes and colloidal shells at the liquid-liquid interfaces.
متن کاملNanoparticle assembly and transport at liquid-liquid interfaces.
The self-assembly of particles at fluid interfaces, driven by the reduction in interfacial energy, is well established. However, for nanoscopic particles, thermal fluctuations compete with interfacial energy and give rise to a particle-size-dependent self-assembly. Ligand-stabilized nanoparticles assembled into three-dimensional constructs at fluid-fluid interfaces, where the properties unique ...
متن کاملMolecular Self-Assembly at Metal-Electrolyte Interfaces
The self-assembly of molecular layers has become an important strategy in modern design of functional materials. However, in particular, large organic molecules may no longer be sufficiently volatile to be deposited by vapor deposition. In this case, deposition from solution may be a promising route; in ionic form, these molecules may even be soluble in water. In this contribution, we present a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2012
ISSN: 0028-0836,1476-4687
DOI: 10.1038/nature11084